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Aging of supported metal catalysts may result from the diffusion of metal 
crystallites on the surface of the support and subsequent sintering of the colliding 
particles. In the present paper procedures to extract from experimental data 
information about the rate determining step of the process and its characteristics 
(diffusion coefficient, rate-of-merging constant) are suggested. The experimental 
methods discussed include electron microscopy, X-ray line broadening, small angle 
X-ray scattering, magnetic measurements and static chemisorption. The experi- 
mental methods provide some average values of the crystallite size which are 
sensitive to the form of the size distribution. Using for the size distribution theoreti- 
cal results valid for diffusion or sintering control criteria are established which 
compared to experimental data allow a choice among various mechanisms. 
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NOMENCLATURE 

Total number of particles per unit surface area of support at 
t = 0 divided by total number of particles per unit surface area 
of support at t = t 
Dummy variable 
Constants independent of time 
Constant independent of particIe size 
Constants independent of time 
Number of particles per unit surface area of support composed of 
i metal units 
Diffusion coefficient of particle composed of i metal units 
Diffusion coefficient of particle i with respect to particle j 
Exponent independent, of particle size 
Exponent independent of particle size 
Dimensionless distribution function 
Constant independent of particle size 
Constant in Scherrer equation 
Second order rate constant 
Const,ant. independent of particle size 
Mean crystallik dimension 
Mean length of particle size distribution defined by Eq. (26) 
Crystallite size in continuous and discrete representation, re- 
spectively 
Linear dimension of partisle size distribution defined by Eq. (49) 
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Moments of the dimensionless distribution function g(x) 
Exponent 
Total number of crystallites per unit surface area of support for 
t = t and t = 0, respectively 
Total number of particles at times tl and tz, respectively 
Cumulative distribution in the continuous representation 

Continuous density distribution function 

Number of particles per unit surface area of support having a 
volume in the range v to v + dv 
Number of particles of size Zi 
Dimensionless cumulative distribution 
Radius of interaction between two colliding particles containing 
i and j metal units 
Guinier radius for point-shaped X-ray beams at t = t and t = 0, 
respectively 
Guinier radius for line-shaped X-ray beams 
High field radius from magnetic measurements 
Low field radius from magnetic measurements 
Porod radius for point-shaped and line-shaped X-ray beams, 
respectively 
Volume to surface radius 
Mean radius from X-ray line broadening 
Average radius defined by Eq. (A-l) 
Radius of particle 
Radius of particle containing i metal units 
Average radius of particle defined by Eq. (8) 
Total exposed surface area of metal per unit surface area of sup- 

port at t = t and t = 0, respectively 
Specific exposed surface area of metal per gram of metal 
Dimensionless time 
Crystal dimension in the direction perpendicular to the reflecting 
plane x-y 
Time of process 
Volume of a particle 
Initial average volume of the particles 
Volume of a particle containing i metal units 
Volume increment 
Average volumes as measured by different techniques defined in 
Table 4 
Dimensionless volume 
Dimensionless average volumes 

Reaction rate constant for the merging process of two particles 
containing i and j metal units 
Surface shape factor 
Volume shape factor 
Diffraction line breadth 
Density of metal 
Standard deviation of the size distribution 
Standard deviation of the dimensionless size distribution 
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Similarity variable in the continuous representation, dimension- 
less volume 
Similarity variable in the discret’e representation 
Small scale t’ime in the diffusion model 

X-ray wavelength 
Moments of similarit’y distribution defined by Eq. (12) 
Dimensionless time in the sintering cont8rolled case 

Dimensionless time in the diffusion controlled case 

Total volume of metal per unit surface area of support 
Dimensionless total volume of metal per unit surface area of 
support 
Similarity variable in the continuous representation, dimension- 
less distribution function 
Similarity variable in the discrete representation 

I. INTRODUCTION 

Aging of supported metal catalysts may 
result from the diffusion of metal crystal- 
lites on the surface of the support and 
subsequent sintering of the colliding par- 
ticles (1, 2). If the time needed for two 
colliding particles to merge into a single 
unit is long enough compared to the diffu- 
sion time, then the merging process is rate 
determining and the aging is sintering con- 
trolled. Alternatively the aging is diffu- 
sion controlled. The migration of crystal- 
lites is hindered when they experience 
strong interactions with some sites of the 
support or when the crystallite sizes ap- 
proach the dimensions of the pores. When 
the migration is hindered, an equilibrium 
crystallite size distribution may be achieved 
after a certain time (2). 

For unhindered migration two limiting 
situations arise. For diffusion controlled 
aging the size distribution after a suffi- 
ciently long time becomes almost indepen- 
dent of the initial distribution and can be 
represented by a universal curve in the 
dimensionless variables $ = n(v) +/P vs 
7 = NV/+. For sintering controlled aging, 
no universal curve in the coordinates 
($,v) exists for the asymptotic behavior 
of the size distribution; a family of curves 
dependent on the supplementary param- 
eters T, = cu112~r,Not and 9” = +/v,A~~~ is 
obtained instead. 

In the following paragraphs situations in 

which migration is unhindered will be con- 
sidered only. The goal is to develop pro- 
cedures for extracting from experimental 
data information about: (i) the rate deter- 
mining step of the aging process, and (ii) 
the magnitude and size dependence of the 
diffusion coefficient of the crystallites and/ 
or of the rate-of-merging constant. Both 
physical and chemisorption methods are 
examined. The methods include: (a) elec- 
tron microscopy ; (b) X-ray line broaden- 
ing; (c) small angle X-ray scattering; (d) 
magnetization measurements; and (e) static 
chemisorption. 

Each of the experimental techniques pro- 
vides some average value of the crystallite 
size. These averages depend on the size 
distribut.ion. Because the size distribution 
and its time dependence are sensitive to 
the rate determining step of aging, a choice 
among various mechanisms can be made. 
In this paper available experimental data 
are interpreted on the basis of the criteria 
to be established. 

II. ELECTRON MICROSCOPY 

In recent years improved electron mi- 
croscopes have become available and mi- 
croscopic techniques have been refined to 
give resolutions higher than 2 A (S-J.?), and 
crystallites as small as 4-6 A have been 
observed and sized (S-4). 

Theoretically, the size distribution of 
metal crystallites can thus be obtained to 
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include very small crystallite sizes. From 
this information, any average diameter of 
the size distribution can be calculated with 
some accuracy. 

Electron microscopy, however, provides 
a measure of the projected crossectional 
area of a particle perpendicular to the 
electron beam. Calculations of average 
diameters of physical significance, as for 
example the surface average and volume 
average diameters can only be obtained 
with an additional assumption concerning 
the crystallite shape. 

In the following development it will be 
shown that 

a. the whole size distribution, 
b. the cumulative size distribution, and 
c. the variance of the size distribution 

can be used to identify the rate controlling 
step of the aging process. Information about 
the diffusion coefficient of the crystallites 
or about the rate-of-merging constant can 
be obtained from electron micrographs 
taken at different times of the aging 
process. 

1. Size Distribution Used to Identify the 
Rate Determining Step of the 
Aging Process 

As shown previously (2) the time de- 
pendent size distribution n(v,t) , where 
n(v,t)dv is the number of particles per 
unit surface area of support having a vol- 
ume in the range v to v + dv, can be rep- 
resented for diffusion control after a short 
transient period by a unique curve in the 
coordinates 

and 

(2) 

N is the total number of crystallites per 
unit surface area of support and + is the 
total volume of crystallites per unit sur- 
face area of support. This unique curve is 
independent of the initial size distribution. 
The length of time after which this unique 
curve is reached depends, however, on the 

initial distribution, being longer for broad 
initial distributions. For sintering control, 
no such unique curve exists and, as will 
be shown later, after a short transient 
period 

For diffusion controlled aging, the shape 
of the curve I#(?) has been computed ear- 
lier for some cases (2). New computations 
have been carried out for various size 
dependencies of the diffusion coefficient of 
the crystallites, and the results are plotted 
in Fig. 1. The results show that for small 
values of 7 and thus small crystallites 
[see Eq. (2) ] the shape of the curve $(r]) 
depends distinctly on the assumed size 
dependence of the diffusion coefficient. For 
large values of T and thus larger crystal- 
lites, however, the obtained curves are 
close to each other. 

For sintering control and an initially 
unisized distribution, the corresponding 
curves are given in Ref. [ (2)) Fig. 201. 
Figures 2 and 3 of this paper show the re- 
sults obtained also for sintering control 

FIG. 1. Similarity solution for diffusion controlled 
case. 
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FIG. 2. Similarity solution for sinking controlled 
case; initial distribution 

i < 10 
i>lO. t 

for two other initial distributions. In all 
cases a family of curves is obtained which 
for large sizes exhibit similar shapes even 
for short times. As time increases, the 
similarity in shape extends to smaller and 
smaller sizes. For sufficiently long times a 
family of curves is obtained: each of them 
is characterized by the dimensionless time 
TV and by a constant parameter 4” con- 
taining some information about the initial 
distribution. Since these curves are close 
to each other, information concerning 
cumulative distributions and some global 
characteristics of the size distribution may 
be obtained using only the similarity vari- 
ables even in the sintering controlled case. 

Comparison of the curves q(v), obtained 
for diffusion control, with those obtained 
for sintering control, [ (2)) Fig. 201 and 
Figs. 2 and 3, shows a distinct difference 
over the whole size range and thus allows 
differentiation between diffusion and sin- 
tering control. 

Experiments may furnish a discrete spec- 
trum of crystallite sizes. The discrete ver- 

Kii-r,z+r, 

10-z 

,o-3jd IO 2 10-I 
7 ’ 

IO 

FIG. 3. Similarity solution for sintering controlled 
case, initial distribution 

sion of the variables $I and 7 may be taken 
as 

(4) 

where Au is a volume increment and ci is 
the number of particles per unit surface 
area of support in the volume range vi - 
(AU/~) to vi + (AU/~). 

For too large values of Au, it is diffi- 
cult to transform the experimentally ob- 
tained discrete size distribution into a 
continuous size distribution. In such a case 
it is preferable to use a cumulative dis- 
tribution. The cumulative distribution is 
defined as N,/N = (l/N) JVw n(v,t) dv in 
the continuous representation. For diffu- 
sion controlled aging it is, like q, depen- 
dent only on 7: 

N, 1 - ca 
-=- N N ” nb,W = 

/ / 
1 iWdtl. (6) 
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FIG. 4. Cumulative distribution for diffusion controlled case. 

In Fig. 4 the cumulative distribution is 
plotted for various size dependencies of the 
diffusion coefficient as a function of I]~*. 
For sintering control and an initially 
unisized distribution, Fig. 5 shows that in 
the N,,/N, vi* representation a family of 
curves characterized by various values of 
~~ is obtained. The curves from Figs. 4 and 
5 show important differences over the 
whole size range of crystallites and thus 

allow differentiation between diffusion and 
sintering control. Because the theoretical 
curves in Fig. 4 are so close to each other, 
no information concerning the size depen- 
dence of the diffusion coefficient can be 
obtained. 

In what follows it will be shown that 
some global characteristics, for instance 
the variance,. allow identification of the 
rate determmmg step of the aging process. 

FIQ. 5. Cumulative distribution for sintering controlled case; unisised initial distribution. 
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6. The Variance of the Size Distribution 
Used to Identify the Rate 
Determining Step 

The variance of the size distribution is 
defined by 

g? z 

. I  

o”I (r - (r))2 n+ dr = (9) - (T)~, 

where 

(7) 

(8) 

and 

If the volume is assumed to be propor- 
tional to 9, i.e., v = kr3, and the simi- 
larity variables defined by Eqs. (1) and 
(2) are used, Eq. (7) leads for the stan- 
dard deviation (r to 

u = ((T2) - (r)Y = G3 b2,3 - b,,d211’* 

(10) 
and Eq. (8) leads for the average radius 
<r> to 

+) = V3J-o’V3J, dq _ P3 
kl/3N1/3 - k1/3N1/3 P1131 (11) 

where the moments pm are defined by 

P m = / Om v”1L dq. (12) 

The ratio between the average radius and 
the standard deviation permits elimina- 
tion of the unknown proportionality con- 
stant k: 

id= P113 

u b2;3 - (P1,3)21L'2' 
(13) 

For diffusion control the ratio <r>/a 
attains, after a short transient period, a 
constant value. For sintering control, after 
a short period of strong time dependence, 
this ratio becomes a weakly dependent 
function of time (Fig. 6). In Fig. 6 the 
symbol <L> rather than <r> was 

6 
(9 - 
=4 

-0 2 4 6 8 IO 
3 *T2 

FIG. 6. The ratio of the average crystallite di- 
mension (L) to the standard deviation CT as a func- 
tion of the dimensionless times TV and ~2 for diffusion 
and sintering control, unkized initial distribution. 
(1) Kij m pi-’ + rj-‘; (2) K,j O( rip1 + rim’; (3) 
Kij = COIlSt.; (4) Kij o( Ti* + Tj’. 

chosen because Eq. (13) is valid for any 
characteristic dimension of the particle 
related to the volume via an expression 
of the form v = kL3. 

Table 1 contains the values of the mo- 
ments, pm. For diffusion controlled aging, 
various size dependencies of the diffusion 
coefficient are considered. For sintering 
controlled aging, the values of the moments 
are given for (~ii CC [ (ri* + r$)J(ri + rj)] 
and an initially unisized distribution. 
Values for all the moments of importance 
in any of the experimental methods dis- 
cussed in this paper are included. 

For diffusion controlled aging, and de- 
pending on the size dependence of the 
diffusion coefficient, the mean dimension 
<L> is related to the standard deviation 
u by 

(L) = 4.36~ for 
1 1 

Dij cc - + - 
Ti2 rjz > 

, 

(L) = 3.70~ for Dij 0~ ,’ + ;’ , 
z I 

(L) = 2.76~ for (Dij = const). 

For sintering control (see Fig. 6) 

(L) = 2.41~ for 71 = 5, 
(L) = 2.06~ for ~~ = 10. 

The values given for sintering control have 
been obtained for an initially unisized dis- 
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tribution (this kind of distribution appears 
to be valid for certain fresh metal cata- 
lysts). For other initial distributions, dif- 
ferent values will be obtained for <L>/a. 
However, in all cases a broad size dis- 
tribution will develop after sufficient heat- 
ing, and consequently the ratio <L>/u 
will decrease. Figure 7 compares the theo- 
retical predictions with the experimental 
data for supported metal catalysts (8, .&8). 

Figure 7 includes experimental results 
on the behavior of islands of metal on the 
surface of an amorphous support (9, IO). 
Skofronick et al. (9, 10) studied the struc- 
tural changes of vacuum-deposited gold 
islands on amorphous supports of carbon 
and silicon monoxide undergoing additional 
heat treatment. They found that: (a) the 
number of islands per unit area of support 
decreased ; (b) the mean radius and the 
standard deviation increased ; and (c) the 
fraction of the support area covered by the 
islands decreased. Since the growth mech- 
anism is as for supported metal catalysts, 
it is natural to include the data in Fig. 7. 
Figure 7 shows that identification of the 

30. , , , , ( 

20 - SINTER ING 

CONTROL 

0 20 
4o (9 6o 8o 

100 

FIG. 7. The standard deviation (r as a function of 
the average crystallite dimension (L) as obtained 
from theoretical predictions and as observed experi- 
mentally for supported metal catalysts and islands 
of metal on thin films. (0) reduced at 5OO”C, im- 
pregnation type (4); (0) reduced at 6OO”C, im- 
pregnation type (4); (V) reduced at 5OO”C, adsorp- 
tion type (4); (v) reduced at 770°C adsorption 
type (4); (n).reduced at 47O”C, impregnation type 
(9); (0) heated in vacuum, 15 hr (8); (X) heated 
in air, 15 hr (8); (m) gold islands on carbon and 
silicon monoxide supports (IO). Sintering control 
above line (3); diffusion control below line (3); 
(1) Dii 01 ri-* + rim*; (2) Dij O: fi-l + T;-'; (3) 
Dij = const. 

rate determining mechanism and of the 
size dependence of the diffusion coefficient 
is indeed possible. The representation used 
in Fig. 7 is valid only after the effect of 
the initial distribution has disappeared : 
For diffusion control the universal ($-7) 
curve is then attained; for sintering con- 
trol the size distributions get broader with 
time of heat treatment and thus the ratio 
u/<L> increases with time. After suffi- 
ciently long heat treatment, the experimen- 
tally obtained ratio o/<L> will lie above 
the region for diffusion control and will 
move to even higher a/<L> ratios after 
additional heat treatment. 

3. Electronmicroscopy Used to Determine 
the Magnitude of the Diffusion 
Coefficient and the Rate of 
Merging Constant 

Depending upon the rate determining 
step, the time dependence of the total num- 
ber of particles now allows estimation of 
the magnitude of either the diffusion co- 
efficient or of the rate-of-merging constant. 
It has been shown previously (2) that the 
rate of change of the total number of par- 
ticles for diffusion control is given by: 

dN -= 
dt 

- bIN2+ > 

where 

(15) 

4s 
K* = ln(4T) DIVI-~, (16) 

Equation (14) is valid if In 4T >> 1. Be- 
cause K” varies only slowly with 6’ and 
thus with T, In(4T) is henceforth assumed 
constant. Equation (14) allows computa- 
tion of the ratio DJln(4T). With an esti- 
mation of In(4T), the diffusion coefficient 
is then obtained. The experimental data 
of Skofronick et aZ. (9, 10) for small gold 
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islands on a support-described above in 
some detail-are now used to compute the 
magnitude of the diffusion coefficient. From 
Fig. 7, where Skofronick’s data are plotted, 
one may conclude that the size dependence 
of the diffusion coefficient is represented 
satisfactorily by Dij cc (l/ri) + (l/ri) , i.e., 
m = -s. Introducing ‘rn = - $$ into Eq. 
(14) and integrating, one obtains with 
pel13 = 1.159 (see Table 1) 

Dl 341’3 __ = 
ln(41) 16?rv11’31.159(t2 - t,) 

1 

1 N14/3 * (18) 

Pm = / om J/h 71, $J*)v~~. (22) 

In the derivation of Eq. (19), the size de- 
pendence of the rate of merging constant, 
cuii, is assumed to be of the form 

Equation (18) allows computation of the 
ratio D,/ln (4T) from experimental data. 

For Skofronick’s data the ratio Dl/ 
ln(4T) varies, depending on the experi- 
mental conditions, between 3 X lo-l6 and 
1.5 X lo-l7 cm2/sec (assuming r1 = 10 A). 
To obtain the diffusion coefficient D, from 
the ratio D,/ln(4T), the quantity ln(4T) = 
In(4D,,6”/R112) has to be estimated. The 
small scale time 0’ is, however, not pro- 
vided by the theory. Because the time 
0’ influences the diffusion coefficient only 
via In@, even large changes in the value 
of 0’ have a weak effect on the value of 
the diffusion coefficient. For a specific ex- 
ample [Expt 8, Table 2 in (IO)] the ratio 
DJn(42’) is computed from Eq. (18)) 
and one obtains D,/ln(4T) = 2.45 X 10-l’ 
cm2/sec. Choosing 100 set <fV< 9000 set, 
where 9000 set is the total time of the 
experiment, one obtains for rl = 10 A that 
D, is in the range of 2 X lo-l5 to 6 X l&l6 
cm2/sec. Using the same procedure, one 
finds that, depending upon experimental 
conditions, the diffusion coefficient of the 
gold islands in Skofronick’s experiments is 
of the order of lo-l5 to 5 X lo-l7 cm2/sec. 
For supported metal catalysts, we pre- 
viously (2) have computed a diffusion co- 
efficient of the same order of magnitude. 

The time dependence of h is weak com- 
pared to the time dependence of N (see 
App. A), and thus b, can be considered 
constant. Equation (19) can thus be inte- 
grated to yield an expression for the rate 
of merging constant (Ye,: 

and 

(25) 

N, and N, are the total number of par- 
ticles at times t1 and tz, respectively. The 
exponent m may be found from the rate 
of change of the total number of particles 
in the system. The moments pu, are of 
order unity. For m = s/3 the appropriate 
moments are given in Table 1. Equations 
(24) or (25) thus allow estimation of the 
rate-of-merging constant alI. 

If the aging process is sintering con- No experimental data obtained by elec- 
trolled, the rate of merging constant, all, tron microscopy are available to compute 
can be obtained as follows: (Yap. However, as shown below, data ob- 

For sintering control, the rate of change tained with other techniques are available 
of the total number of particles is given and will be used to compute the rate-of- 
by (1, 2) merging constant (Ye*. 

where 

b, = K*@‘%m, 

and 
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III, X-RAY LINE BROADENING 

X-Ray line broadening is extensively 
used to determine the particle sizes of sup- 
ported metal crystallites in the size range 
50-500 A. The mean dimension, L, of the 
crystallites composing the sample, is re- 
lated to the X-ray diffraction broadening, 
P, by (11, 12) 

L = KLX 
BcOs 

where L is the mean crystallite dimension, 
x the wavelength of the X-rays, 6’ the 
Bragg angle, p the diffraction line breadth 
after correction (see below), and K, de- 
pends on the definition of the mean crystal- 
lite dimension L, the definition of the line 
breadth j3, the shape of the crystallites, 
and the reflection plane considered. For 
details about the application of X-ray line 
broadening to supported metal catalysts 
see Refs. (1.9~.ZS) . 

1. Comments About the Mean Dimension 
Measured by X-Ray Line Broadening 

It is commonly accepted in the catalysis 
literature t’hat X-ray line broadening gives 
the mean length of the crystallite size 
distribution defined by (24-28) 

This conclusion is based on the work of 
Jones (14) who considered the broadening 
caused by the size distribution of cubic 
crystals. Assuming that the total intensity 
reflected by the crystal is proportional to 
its volume, Jones obtained for the integral 
breadth ,8 of the diffraction 

x 
’ = ‘OS e[2*“ni(Zi)Zi4/Z~“ni(~i)~i3]’ 

More recent investigations have shown 
that this result cannot be generalized to 
arbitrary reflect.ion planes and crystallite 
shapes. A more general treatment, based 
on the work of Stokes and Wilson (29), 
and Bertraut (SO), leads to the following 
expression for the integral breadth ,8 
(31, 32) 

In Eq. (27) the effective particle dimen- 
sion L is given by the expression 

(28) 

where T,, is the crystal dimension in the 
direction perpendicular to the considered re- 
flecting plane x-y. The integration in Eq. 
(28) is carried out over all the particles 
in the sample. These equations are valid 
for a dilute ensemble of particles of arbi- 
trary shape, randomly oriented. 

The dimension L in Eq. (28) represents 
a volume average of the distribution of 
crystallites normal to the reflecting plane, 
i.e., 

L = + JTdV = (T2)/(T), (284 

Schwarz inequality (see App. B for de- 
tails) shows that <T2> is equal or larger 
than < T>2 and consequently L is equal 
or larger than <T>. 

Let us consider the case in which line 
broadening is caused by a distribution, ni, 
of small cubic crystallites of sizes Li, the 
sides of which are parallel to the axis of 
the cubic crystallite. Assume that the re- 
flecting plane is parallel to one of the sides 
of the cube. The integration in Eq. (28) 
can be carried out in a simple manner, 
and one obtains Jones’ result: 

L = SITz,Zdxdy = Z;l*ni(Li)Lt. (26) 
SS Twdxdy Zl”ni(L;)Li? 

For arbitrary crystal shapes and reflec- 
tion planes, the dimension L obtained from 
X-ray line broadening, Eq. (28), does not 
reduce to Eq. (26). Furthermore, it is diffi- 
cult to obtain experimentally the integral 
breadth, since it is difficult to evaluate the 
area in the tails of the reflection profile. 
The half maximum intensity breadth, de- 
fined as the breadth at half the maximum 
intensity, is usually measured instead. 
However, a general expression for the half 
maximum intensity ,breadth similar to Eqs. 
(27) and (28) cannot usually be derived. 

One may conclude that X-ray line 
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broadening yields a mean average of the 
crystallite dimension normal to the reflect- 
ing plane [Eq. (28) 1, which only in the 
special case of cubes, and when certain re- 
flection planes are considered, reduces to 
the mean dimension usually used in cataly- 
sis [Eq. (26) 1. Also the integral breadth, 
rather than the half maximum intensity 
breadth, has to be measured. 

In principle it is possible to calculate 
the particle size distribution from the peak 
shape of the diffraction line (S1). How- 
ever, for supported metal catalysts it is 
difficult to obtain an accurate corrected 
peak shape. 

d. Time Dependence of the Mean Average 
Crystallite Dimension Used to Identify 
the Rate Determining Step of the 
Aging Process 

The time dependence of the mean aver- 
age crystallite dimension, regardless of its 
exact definition may allow identification 
of the rate determining step in the aging 
process. In App. A it is shown that the 
time dependence of the average particle 
size, defined by the general expression 

is given by 

(R,,,)3(1-) = Cd + c2 

for diffusion control, and by 

The theoretical equations concerning the 
intensity of the scattered X-ray (S9-44) 
allow determination of two average radii, 
the Guinier radius (radius of gyration), 
RG, and the Porod radius, Rp. For a point- 
shaped X-ray beam 

R e,f = Cd + Cd 

for sintering control (m = 2/3). 
Provided the mean average crystal di- 

mension obtained from X-ray line broaden- 
ing can be equated to the average radius, 
R e,f, the above equations can be used 
to determine both the aging mechanism 
and the size dependence of the diffusion 
coefficient. 

RG2 = Jo”n(+*dr = <‘“>, 
]O”n(r)r6dr (r6) (30) 

and 

Rp = lo”n(r)+dr _ (fl). 
Jomn(r)r2dr (r2) (31) 

For a line-shaped beam 

RGL~ = (T’)/(+) 
and 

(32) 

IV. SMALL ANGLE X-RAY SCATTERING (33) 

Investigations of metal dispersions of In what follows it is shown that as soon 
supported metal catalysts with small angle as the similarity representation becomes 
X-ray scattering technique (SAXS) have valid, the ratio RJR0 is a constant for 
been made only seldom because the scat- diffusion controlled aging. After an initial 

tering from the pores of the support and 
the crystallites contained in them are cor- 
related. Consequently the scattering from 
the pores cannot be treated as part of the 
background and substracted out. The scat- 
tering from the pores, however, can be 
eliminated, either by filling the pores with 
a liquid of the same electron density as 
the support (SS) or by destroying the 
pores by pressure sintering the catalyst 
sample prior to the small angle scattering 
experiment (94). SAXS was recently used 
for platinum metal dispersions on alumina 
(SC%) and for platinum metal dispersions 
on charcoal catalysts (S7). Whyte et al. 
(35, 58) eliminated the interfering scatter- 
ing from the micropores of the alumina 
support by filling the pores with small 
amounts of CHJ, or C,H,I. Somorjai et aZ. 
(S4) reduced the pore scattering by pres- 
sure sintering the catalyst sample. Parlitz 
et al. (S7) assumed that the effect of the 
metal crystallites can be obtained sub- 
stracting the scattering of the blank sup- 
port. Since no additivity of the scattering 
of metal and support exists, their results 
have to be reconsidered. 



strong variation, the same ratio becomes 
a weakly dependent function of time for 
sintering controlled aging. Comparison of 
the experimentally obtained and computed 
values of this ratio allows identification of 
the rate controlling step of the process. 

1. The Ratio Rp/Rc Used to Identify the 
Rate Determining Step 

Since the available experimental data 
have been obtained with a line-shaped 
X-ray beam, only Ro, and RpL are con- 
sidered in the following treatment. If the 
volume is assumed proportional to r3, v = 
ICY”, (12 = const.) , and if the similarity 
variables (1) and (2) are introduced one 
can write 

and 

R 
PL 

= r $0”vn(vW 

k”3 J-,,=‘v2’3n(v)dv 
4 l/3 

= kl/3~U3j-,,-q2i3$,&,1’ (35) 

Dividing Eq. (35) by Eq. (34) leads to 
the elimination of the unknown propor- 
tionality constant k. One obtains 

RP= (JClwq5’W?P2 -. 

6, = lomq2’3~dq(S0-q’1’~dq)1’2 (36) R 
Because for diffusion control + depends 
after a short time only on 7, the ratio 
Rp,/Rc, is a constant, the value of which 
depends on the size dependence of the dif- 
fusion coefficient of the crystallites. 

For sintering control the ratio RPL/RGL 
is plotted in Fig. 8 as a function of 5,. 
Until T1 E 5, the mentioned ratio has a 
rapid variation, while for larger values of 
51 the variation is weaker. 

Table 2 gives the theoretical values ob- 
tained for the ratio Rp,/Ra, for diffusion 
control and sintering control. The mo- 
ments of the similarity distribution used 
in the calculations are listed in Table 1. 

The ratio RPL/RGL is a measure of the 
width of the distribution function n(v). 
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0 2 4 6 8 
‘cl 

FIG. 8. The ratio of the Porod radius to the 
Guinier radius for a line-shaped X-ray beam from 
numerical solution of kinetic equations for sintering 
control; unisized initial distribution. 

For diffusion control with strongly size 
dependent diffusion coefficients, the dis- 
tribution function is relatively narrow. 
This fact is indicated here by a ratio RPL/ 
Ro, close to 1. For diffusion control with 
size independent diffusion coefficient, the 
distribution function is less narrow, while 
for sintering control the distribution func- 
tion is very broad and its breadth in- 
creases with time. 

Table 3 lists the results of Whyte et al. 
(55) for platinum dispersion on alumina 
and shows that the rate of aging was sin- 
tering controlled in all cases. 

TABLE 2 
THE RATIO RP~/RG, FOR VARIOUS MECHANISMS 

AS OBTAINED FROM THE THEORY 

RP~/RG, 

Diffusion control 
1 1 

Dij 01 - + - 
ri2 rj2 0.877 

1 1 
ng cf. - + - 

r, 7-1 
0.853 

Dij = const. 0.815 

Sintering controla 
T, = 2.5 0.702 
7, = 5 0.662 
I, = 7.5 0.647 
7, = 10 0.640 

n At 71 = 0 unisized distribution. 
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TABLE 3 
EXPERIMMENTAL RKSULTS OF WHBTE et al. (35) 

Catalyst ~RG~ 

F-G (fresh) 57 
A-G (aged) 75 
F-3 (fresh) 59 
A-3 (aged) 64 

2RpL RPJRG, 

37 0.649 
56 0.747 
41 0.695 
43 0.672 

2. The Time Dependence of Ra Used To 
Calculate the Rate of Merging 
Constant 

In App. A it is shown that for diffusion 
control and Dii oc (l/ri2) + 1/(rj2), Ra5 is 
a linear function of time 

Ro5 = C’lt + RG,~. (37) 

For sintering control and m = Ys, Ra is in 
good approximation a linear function of 
time 

Rc = Cd + Rc,. (33) 

Somorjai et al. (34) have measured Rc, as 
a function of time for platinum on alumina 
in both reducing and oxidizing atmo- 
spheres. They found: 

a. That a faster change occurred at 
higher temperatures, 

b. That heating in an oxidizing atmo- 
sphere caused a faster growth process than 
heat treatment in a reducing atmosphere, 

c. That the samples exhibited a very 
fast growth in the first few hours, which 
leveled off with time. 

The effect of the temperature and of the 
atmosphere have been explained in our 
previous paper (2) by their influence on 
the mobility of the crystallites and on the 
merging behavior of the crystallites. The 
growth behavior can be explained as fol- 
lows. Initially the crystallites are small 
and their mobility is relatively high, so 
that their growth is controlled by the 
merging process of the crystallites. Fig- 
ure 9 shows the experimental dependence 
of the average radius of gyration as a func- 
tion of time during the initial period. In 
the cases for which enough experimental 
information is available, Ra is a linear 

FIG. 9. The time dependence of the Guinier radius 
as observed experimentally (54). Oxidizing atmo- 
sphere: (V) T = 700°C; (0) T = 600°C; reduc- 
ing atmosphere: (X) T = 700°C; (0) T=600"C. 
(0) Guinier radius at t = 0 in all the cases. 

function of time to a good approximation. 
This kind of dependence shows that the 
rate of aging is sintering controlled during 
this period. 

After extended heat treatment, the crys- 
tallites have grown appreciably and their 
mobility is decreased. Additional restric- 
tions are caused by the fact that some of 
the crystallites are now of the same order 
of magnitude as the pores in which they 
lodge and consequently their diffusion is 
hindered. 

In what follows, the rate of change of 
the Guinier radius, RG, during the initial 
period of Somorjai’s experiments is used 
to compute the magnitude of the merging 
constant (Yap. 
Because (see App. A) 

RG = Cd + RG", 

where 

(3% 

and 

the rate of merging constant, (Yap, may be 
shown to be given by 
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Assuming that the particles are spheres 
and the surface area of the support is of 
the order of 200 m*/g of support, the rate 
of merging constant, oI1, for two particles 
of radius 10 A is obtained as: 

ml = 2.1 X 1O-g cm/set for 600°C and in 
an oxidizing at- 
mosphere; 

QIl = 1.8 X 10mg cm/see for 600°C and in 
a reducing atmo- 
sphere ; 

a11 = 4. X 1O-g cm/set for 7OO”C, again 
in a reducing at- 
mosphere. 

We previously (2) have computed for the 
rate-of-merging constant for Pt-Al,Os re- 
forming catalysts values of the same order 
of magnitude. 

V. MAGNETIC MEASUREMENTS 

This method, which is applicable for 
ferromagnetic metals, for example nickel, 
cobalt, and iron yields two average vol- 
umes of t,he particle size distribution, the 
low field volume ZI~,~ and the high field 

method 
volume 
are de- 

volume VHF. For details on this 
see Refs. (45-49). The low field 
uLF and the high field volume VHF 
fined by 

(u”) _ Jg”u*n(u)du 
2’LF = (v) - ~o”vn(v)dv ’ 

UHF = (V) = Am Wl(U)CZZJ. 

and 

(46) 

The high field radius is independent of the 
form of the size distribution and thus in- 
dependent of the aging mechanism. The 
ratio RLF,/RHF is given by 

For diffusion control this ratio is a con- 
stant, the value of which depends on the 
size dependence of the diffusion coefficient. 
Using the appropriate moments (see 
Table l), one obtains from Eq. (47) 

RLF = 1.13 
&IF 

R 
2 = 1.17 
R HF 

R LF 

1ZHP 
- 1.26 (Dij = const.). 

For sintering control the ratio RLF/RHF is 
plotted in Fig. 10 as a function of TV. For 
~1 = 10, &F/&F has a value of 1.89 and 
will move to still higher values for increas- 
ing TV. Comparison of Fig. 10 with the 
values obtained for diffusion control shows 
that the value of the ratio of R,p/R,F 

(41) 
allows identification of the rate determin- 
ing step. For diffusion control, the size 
dependence of the diffusion coefficient, 

(4% h owever, cannot be determined since the 

Using the similarity variables (1) and (2) 
these equations can be rewritten as 

and 
1.4 

4 
VHF = -* 

N (4) 
1.2 

If the volume is assumed proportional to 
r3, i.e., v = k13, a low field radius, RLF, 

10, 
‘0 2 4 6 8 IO 

and a high field radius, RHF, may be cal- -4 
culated as FIG. 10. The ratio of the low magnetic field radius 

to the high magnetic field radius from numerical 

(45) solution of kinetic equations for sintering control; 
unisized initial distribution. 
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obtained values are too close to each other. 
Reinen and Selwood (47’) have obtained 
saturation magnetizations for nickel sup- 
ported on silica gel and on y-alumina for 
both fresh and thermally treated (sin- 
tered) catalysts. For the sintered catalyst 
only the low field radius was obtained. For 
the fresh nickel silica coprecipitate and the 
nickel alumina impregnate, however, both 
low field and high field radii are reported 
[ (47)) Table 11. Since during the prepa- 
ration of these samples, high temperatures 
were used for extended times, migration 
and sintering of the unreduced nickel may 
already have occurred. One thus might ex- 
pect that even the fresh catalysts may al- 
ready follow the unique curve. 

The ratio RLF/RHF yields: 

RLF/RHF = ; = 1.53 ;p;;zk;-+t;a 

and 

26 
RLF/RHF = - = 2 

13 
for nickel-alumina 
impregnate. 

Such a high ratio of RLF/RHF indicates 
that the agglomeration during the prepa- 
ration process was sintering controlled. 

VI. CHEMISORPTION MEASUREMENTS OF 
THE EXPOSED SURFACE AREA OF METAL 

Dynamic and static chemisorption meth- 
ods discussed in several review papers (8, 
58, 50-M) are available. Though the dy- 
namic methods are easily applicable, the 
gas uptake cannot be related in a simple 
way to the surface area of the sample. 
Consequently the discussion will be re- 
stricted here to the static methods. If one 
assumes that the particles have a similar 
shape, the specific surface area S” per gram 
of metal is related to the average particle 
dimension l,, 

where p is the density of the metal, a8 the 
surface shape factor, (Ye the volume shape 
factor and 

(4% 

For spheres and cubes having all surfaces 
exposed .a,/cw, = 6, while the linear dimen- 
sion I,, is the diameter of the sphere and 
the length of the cube, respectively. 

In what follows the time dependence of 
the exposed surface area of metal per unit 
area of support, S, is used to determine the 
rate determining step of the aging process. 
S” and S are related by a constant factor, 
dependent on the metal loading of the 
catalyst and the surface area of the 
support. 

1. The Time Evolution of the Exposed 
Metal Surface Area Used to Identify 
the Rate Determining Step 

It has been shown previously (1, d) that 
for rate constants of the form 

K(v,fi) = K’(P + P) (50) 

the time dependence of the exposed surface 
area S of the metal is given by 

where 

(52) 

b, is a geometric factor, dependent on the 
shape of the particles which is related to 
the surface and volume shape factors by 

For diffusion control the coefficient b, is 
after a certain time (in which the simi- 
larity solution is reached) independent of 
time. For sintering control. b, is after an 
initial rapid variation with time a weakly 
dependent function of time. For the par- 
ticular value, m. = 2/3, Eq. (52), reduces, 
for sintering control, to the constant 

b3 = g2. (54) 

Integration of Eq. (51) leads to 

SO 
0 

a-3m 

s 
= 1 + so-%at (55) 

for diffusion control, and to 
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SO 
0 s = 1 + Sobd (5’3) 

for sintering control if m = 2/. 

If for sintering control m # 2/3, Eq. (55) 
remains approximately valid because the 
coefficient b3 has a much weaker time de- 
pendence than the exposed surface area S. 

The decay of the exposed surface area 
is very sensitive to the rate determining 
step of the aging process. In the case of 
sintering control, when m = z/3, l/S in- 
creases linearly with time, while in the 
diffusion controlled range, ( I/S)3-3m in- 
creases linearly with time. For example, for 
a diffusion coefficient which depends on size 
as Di oc ri-*, (l/S) 5 increases linearly with 
time. 

In our previous paper [ (2)) Table l] we 
have used this high sensitivity of the de- 
cay of the exposed surface area to deter- 
mine the mechanism of the aging process 
and the size dependence of the diffusion 
coefficient for a variety of Pt-on-alumina 
catalysts. 

VII. COMPARISON OF THE VARIOUS 
METHODS 

Each of the discussed techniques pro- 
vides an average radius of the size distri- 

bution of the crystallites summarized in 
Table 4. 

The only radius which is independent 
of the form of the size distribution is the 
high magnetic field radius 

R 
1 41’3 HF=--. 

p/a pia 

In Table 5 this radius is chosen as 100, 
and the other average radii obtained from 
the different experimental methods and for 
different aging mechanisms are compared 
to Rm. The average radii were computed 
using the appropriate equations given in 
the text together with the values for the 
moments of the similarity distribution 
listed in Table 1. 

For diffusion control with a strongly size 
dependent diffusion coefficient, the size dis- 
tribution is narrow and consequently the 
values of the average radii are close to, 
each other, within 20%. For sintering con- 
trol the size distribution becomes very 
broad with time and the average radii vary 
by more than a factor of 2. 

For both diffusion control and sintering 
control, the relationship among the average 
radii can be described by inequalities of 
the form 

Rm I Rvs = Rp I Rw < RIZ < Rc+ (57) 

TABLE 4 
AVER-AGE VOLUMES AS MEASURED BY THE DIFFERENT TECHNIQUES 

Method Average volume 

X-ray line broadening vw = k&+,3 = ‘;;:;$;;;;g+ 

Gas-chemisorption method 
(lo”vn(v, W)” 

v‘ris = mvs3 = (Jo-u2/3n(y, Q&)3 

Small angle X-ray scattering 
(J”v’~n(u, t)dg’2 

0% = ‘rRc,3 = (Jo”u”13n(v t)&))3’2 

cp = r.Rp3 = (la”vn(% Iw 
JLl”(u”“n(u, t)dv+ 

Magnetic measurements 

Electron microscopy provides any average volume needed 

0 As defined by Eq. (26). 
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TABLE 5 
THEORETICAL PREDICTIONS OF THE RELATIVE MAGNITUDE OF THE AVERAGE RADII OHTAINKD BY 

VARIOUS METHODS FOR DIFFUSION AND SINTERING CONTROL 

RHF RP Rvs Rw” RLF 
RGL 

RG 

Diffusion control 

D<, O( Tim2 + ~j-2 100 105 105 109 113 120 123 

Dii o( r--l + r<-1 100 107 107 112 117 125 129 

Dii = const. 100 111 111 119 126 136 147 

Sintering control (initially unisized) 

7, = 2.5 100 115 115 131 144 164 175 
7, = 5 100 125 125 148 165 189 202 

7: = 7.5 100 133 133 160 179 205 220 
7, = 10 100 139 139 169 189 218 234 

a As defined by Eq. (26). 

The equal signs associated with the in- to r3, v = kP. Using the similarity vari- 
equality signs are only valid for unisized ables JI and 77, one obtains 

(A-2) 

distributions. In App. B it is shown that 
these inequalities, Eq. (57)) are valid for 
all possible size distributions. 

By using two different experimental 
methods, the inequalities may be used for 
checking the accuracy of both the basic 
assumptions of the methods and the ac- 
curacy of the experimental procedure. 

The literature is rich in data reported 
for crystallite sizes obtained simultaneously 
with more than one method. 

In Table 6 some of these results are 
summarized and compared to the in- 
equalities (Eq. 57). In the cases where 
the experimental data do not satisfy 
the inequalities, possible explanations are 
advanced. 

APPENDIX A 

The time dependence of certain aver- 
age radii of the distribution function can 
be obtained starting from the general 
expression 

The volume is assumed to be proportional 

The rate of change of the total number of 
particles, N, is given by Eqs. (14) and 
(19) for diffusion control and for sintering 
control, respectively. Integrating Eq. (14)) 
one obtains for diffusion control 

NO 
(-> 

l-m 
N = 1 + (1 - m)No’-%lt. (A-3) 

For sintering control and m = 2/3, b, in 
Eq. (19) is a weakly dependent function 
of time (see Fig. 11). Since the total num- 

FIG. 11. The moments pz,a for sintering control 
and p--2,5 for diffusion control as a function of q and 

72 obtained from numerical solution of kinetic equa- 
tions, unisized initial distribution. 
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ber of particles, NJ changes much faster For sintering control and m = 2/3, one 
with time than b,, one can integrate Eq. obtains 
(19) assuming that b, is constant. One 
obtains K e..l = (‘31 + (34, (A-B) 

No 1’3 
0 iv 

cz 1 + ; No”%& (A-4) where 

Figure 12 compares the total number of and 
particles obtained numerically by solving 
the exact discrete version of the popula- 
tion balance [Eq. (2) in (S)] with that 
obtained from Eqs. (A-3) and (A-4). Using 
Eq. (A-3), Eq. (A-2) becomes 

:x3 
~. 

"q = b,N,"3 

APPENDIX B 

From the numerical results given in 
(&.J)~(~-~) = C,t f CZ (diffusion control), Table 5 it results that 

where 

(A-5) Rm I Rvs = RP 5 Rw I Rm I RG&. 
(B-1) 

and 

5 

( ) 
x i/3’ 
N 

3 

2 

‘0 2 4 6 0 IO’ 
74 

FIG. 12. Comparison of the total number of crys- 
tallites for sintering and diffusion control obtained 
from numerical solution of kinetic equations with 
those obtained from Eqs. (A-3) and (A-4). (0) Nu- 
merical solution of population balance; (--) Eqs. 
(A-3) and (A-4). 

__-- -- 

In what follows it is shown that these in- 
equalities hold for all possible size distri- 
butions. For convenience we use the aver- 
age volumes rather than radii (between 
them the relation 2, = kR3 is assumed 
valid). The inequalities (B-l) can be 
written as 

VHF < Vvs = UP 5 VW 2 ULF 5 216‘. (B-2) 

The following dimensionless quantities are 
introduced 

and 

g(rJ) = 2 n(v,t) (B-3) 

.): = “, 
VQ 

(B-4) 

where ZJ,, is the initial mean volume of the 
crystallites, i.e., uvo = $,/No. 

The zeroth order moment of g(z), MO, 
and the first order moment of g(x) , M,, are 
defined by 
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i 

m Inequality (B-9) yields, for x = 5/3, 
M, = g(x,t)dx = 1, (B-5) 

0 cd3 < MS,3 < u~‘~M?‘“. (B-14) 

s 

m 
M, = (B-6) With ‘v~/Q = (M7,3/M5,3)3/2, and Eqs. 

0 
xg(x,t)dx = $ = a 2 1. 

The variance a*’ of the dimensionless size 
(B-13) and (B-14) one can show that 

distribution g(x,t) is related to the mo- 
ments M, and M, via 

; > ilg, 

*4 u = M2 - Ml2 = Mz - a3. (B-7) or 

For M, = 1, M, = a and M, = CT** + a2 
the following inequalities have been estab- VGr. > ULF. (B-15) 

lished by Von Mises (622) Equations (B-11), (B-12) and (B-15) are 
** z-l 

CP 1+5 
( > 

equivalent to Eq. (B-2), provided that 
< M, < a= V,,./‘V,> > 1. 

(B-8 
From Table 4 it follows 

ifO<x< 1, 
*? z-1 

a2 < M, < uz 1 + 5 
( ) 

TW M4,33Mz,33 -= 
XP a6 ’ 

if 1 < x < 2, (B-9) Making use of the Schwarz inequality 

l/o” fl(4.f(4d2:)~x~2 i [ l,-h”(x)g(x)dx][ I” f*yx)g(x)dx]7 (B-16) 

** z-l 

M, > a= 1+; ( ) 
ifx > 2. (B-10) 

These inequalities result from the Schwarz 
inequality together with the assumptions 
that P(x,t) = Jo5 g(x,t) dx is an increasing 
function of x in the interval 0 5 x < co, 
and that limb,, Job g (x,t) dx = 0. 

Using Eq. (B-S) for x = s?$,, it may be 
shown that 

or 

VLF > Vvs = VP > VHF. (B-l 1) 

Inequality (B-9) leads for x = $5 to 

or 

VLF > VW > VHF. (B-12) 

Inequality (B-10) leads for x = 7/i to 

(B-13) 

with fl(x) = x213 and f2(x) = x113 it results 

and thus 

M4,3M2,3 2 CL2 (B-17) 

VW 2 VP. (B-18) 

Consequently the inequalities (B-2) and 
(B-l) hold for all possible size distribu- 
tions. 

ACKNOWL’EDGMENT 

Acknowledgment is made to the donors of the 
Petroleum Research Fund, administered by the 
American Chemical Society, for support of this 
research. 

REFERENCES 

1. RUCKENSTEIN, E., AND PULVERMACHER, ES., 

AlChE J. 19, 356 (1973); Errata in AIChE 
J. 19, 1286 (1973). 

d. RUCKENSTEIN, E., AND PULVERMACHER, B., J. 

Catal. 29, 224 (1973). 
3. WILSON, G. R., AND HALL, W. K., J. Catal. 

17, 190 (1970). 
4. WILSON, G. R., AND HALL, W. K., J. Catal. 

24, 306 (1972). 
5. PESTRIDGE, E. B., AND YATES, D. J. C., Nature 

Lhldon) 234, 345 (1971). 



138 FULVERMACHER AND RUCKENSTEIN 

6. BOTTY, M. C., DAVIES, M. C., AND FELTON, 
C. D., Anal. Chem. 36, 173 R (1964). 

7. ZAIDMAN, N. M., DZISKO, V. A., KARNAUTK- 
HOV, A. P., KEFELI, L. M., KRASILENKO, 
N. P., KOROLEYA, N. G., AND RATNER, I. D.. 
Kinet. Katal. 10, 386 (1969). 

8. SPINDLER, H., 2. Chem. 13, 1 (1973). 
9. SKOFRONICK, J. G., AND PHILLIPS, W. B., 

J. Appl. Phys. 38, 4791 (1967). 
10. PHILLIPS, W. B., DESLOGE, E. A., AND SKO- 

FRONICK, J. G., J. Appl. Phys. 39, 3210 

(1968). 

SO. 

31. 

3.2. 

BERTRAUT, E. F., Acta Crystallogr. 3, 14 (1950). 
WARREN, B. E., “X-Ray Diffraction,” Addison- 

Wesley, Reading, MA, 1969. 
BUCHANAN, D. R., MCCULLOUGH, R. L., AND 

MILLER, R. L., Acta CrystaZlogr. 20, 922 
(1966). 

33. 

34. 

35. 
11. SCHERRER, P., Gijttinger Nachrichten 2, 98 

(1918). 
1.2. KLUG, H. P., AND ALEXANDER, L. E., “X-Ray 

Diffraction Procedures,” Wiley, London, 
1954. 

36. 
37. 

13. WARREN, B. E., J. Appl. Phys. 12, 375 (1941). 
14. JONES, F. W., Proc. Roy. Sot. Ser. A 166, 

16 (1938). 
15. VAN NORDSTRAND, R. A., LINCOLN, A. J., AND 

CARNEVALE, A., Anal. Chem. 36, 836 (1964). 
16. SPENADEL, L., AND BOUDART, M., J. Phys. Chem. 

64, 204 (1960). 

38. 
$9. 

40. 
41. 

GUNN, E. L., J. Phys. Chem. 62, 928 (1958). 
SOMORJAI, G. A., POWELL, R. E., MONTGOMERY, 

P. W., AND JURA, G., in “Small Angle X-Ray 
Scattering” (H. Brumberger, Ed.), p. 449. 
Gordon and Breach, New York, 1967. 

WHYTE, JR., T. E., KIRKLIN, P. W., GOULD, 
R. W., AND HEINEMANN, H., J. Catal. 25, 
407 (1972). 

CHU, B., J. Phys. Chem. 67, 1916 (1963). 
PARLITZ, B., SCHNABEL, K. H., SARACHOW, 

A. I., PLAVNIK, G. M., AND DUBININ, M. M., 
Z. Anorg. Allg. Chem. 389, 43 (1972). 

WHYTE, T. E., JR., Catal. Rev. 8, 117 (1973). 
HOSEMANN, R., 2. Phys. 113, 751 (1939). 
RISEMAN, J., Acta Crystallogr. 5, 193 (1952). 
GUINIER, A., AND FOURNET, G., ‘Small-Angle 

Scattering of X-Rays.” Wiley, London, 
1955. 

f7. HERRMANN, R. A., ADLER, S. F., GOLDSTEIN, 
M. S., AND DE BAUN, R. M., J. Phys. Chem. 
65, 2189 (1961). 

4s. 

4s. 

44. 

45. 

BAUR, R., AND GEROLD, V., Acta Met. 12, 
1449 (1964). 

18. SPINDLER, H., AND BAGINSKI, K., Chem. Tech. 
(Leipzig) 20, 548 (1968). 

29. SPINDLER, H., AND KRAFT, M., Z. Anorg. Chem. 
391, 155 (1972). 

POROD, G., KoZloid.-2. 124, 83 (1951); 125, 
51, 109 (1952). 

20. AVERY, N. R., AND SANDERS, J. V., J. CataL 
18, 129 (1970). 

SCHMIDT, P. W., AND HIGHT, R., JR., Acta 
Crystallogr. 13, 480 (1960). 

SELWOOD, P. W., “Adsorption and Collective 
Paramagnetism.” Academic Press, New 
York. 1962. 

dl. PLANK, C. J., KOKOTAILO, G. T., AND DRAKE, 
L. C., Joint Symp. Div. Petrol. Chcm., 
Coll. and Surf. Chem., 140th Amer. Chem. 
Sot. Meet., Chicago, 16-I (1960). 

.22. MILLS, G. A., WELLER, S., AND CORNELIUS, 
E. B., Actes Congr. Int. Cntnl. dnd, 1960 
2, 2221 (1961). 

BEAN, C. P., AND LIVINGSTON, J. D., J. Appl. 
Phys. 30, 1205 (1959). 

REINEN, D., AND SELWOOD, P. W., J. Catal. 
2, 109 (1963). 

NEUCEBAUER, C. A., J. Appl. Phys. 31, 1525 

(1960). 

$8. MCHENRY. K. W., BERTOLACINI, R. J., BREN- 
NAN, H. M., WILSON, J. L., AND SEELIQ, H. S., 
Actes Congr. Int. Catal., Znd, 1960 2, 2295 
(1961). 

46. 

47. 

48. 

49. 

50. 

51. 

52. 

53. 

ABELEDO, C. It., .~ND SELWOOD. P. W., J. Appl. 
Phys. 32, 229s (1961). 

GIL’DEBRAND, E. I., Int. Chem. Eng. 6, 449 
(1966). 

2.4. ADAMS, C. R., BENESI, H. A., CURTIS, R.. M.. 
AND MEISENHEIMER, R. G., J. Catal. 1, 336 
(1962). 

SINFELD, J. H., Chem. Eng. Progr., Symp. 
Ser. 63, 16 (1967). 

26. POPE, D., %IITH, W. L., EASTLAKE. M. J., 
AND Moss, R. L., J. Cata!. 22, 72 (1971). 

26. SCHOLTEN, J. J. F., AND VAN MONFOORT, A., 
J. Catal. 1, 85 (1962). 

$77. VAN HARDEVELD, R.. AND VAN MONFOORT, A., 
Surface Sci. 4, 396 (1966). 

28. GEUS. J. W., AND NOBEL, A. P. P., J. Catal. 
6, 108 (1966). 

SCHLOSSER, E. G., Chem.-Zng. Tech. 39, 409 
( 1967). 

54. 

GREGG, S. J., .~ND SING, K. S. W.. “Adsorp- 
tion, Surface Area and Porosity,” Chap. 6. 
Academic Press, London, 1967. 

BOUDART. M., in “Advances in Catalysis” 
(D. D. Eley. H. Pines and P. B. Weiss, 
Eds.), Vol. 20, p. 153. Academic Press, New 
York, 1969. 

29. STOKES, A. R., AND WILSON, A. J. C., Proc. 56. MULLER. J.. Reo. Plbre Appl. Chem. 19, 151 

Cambridge Phil. Sot. 38, 313 (1942). (1969). 



AGING OF SUPPORTED METALS 139 

66. CINNEIDE, A. D. O., AND CLARKE, J. K. A., 60. Moss, R. L., Platinum Metals Rev. 11, 141 

Catal. Rev. 7, 213 (1972). (1967). 
57. KARNAUKHOV, A. P., Kinet. Katal. 12, 1520, 61. CARTER, J. L., CUSUMANO, J. A., AND SINFELT, 

(1971). 
68. LYON, H. B., AND SOMORJ~I, J. Chem. Whys. 

J. H., J. Phys. Chem. 70, 2257 (1966). 

46, 2539 (1967). 
6% VON MISES, R., “Mathematical Theory of 

69. MCLEAN, M., AND MYKURAJ, H., Surface Sci. Probability and Statistics.” Academic Press, 

5, 466 (1966). New York, 1964. 


