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Aging of supported metal catalysts may result from the diffusion of metal
crystallites on the surface of the support and subsequent sintering of the colliding
particles. In the present paper procedures to extract from experimental data
information about the rate determining step of the process and its characteristics
(diffusion coefficient, rate-of-merging constant) are suggested. The experimental
methods discussed include electron microscopy, X-ray line broadening, small angle
X-ray scattering, magnetic measurements and static chemisorption. The experi-
mental methods provide some average values of the crystallite size which are
sensitive to the form of the size distribution. Using for the size distribution theoreti-
cal results valid for diffusion or sintering control criteria are established which
compared to experimental data allow a choice among various mechanisms.
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NOMENCLATURE

Total number of particles per unit surface area of support at
¢ = 0 divided by total number of particles per unit surface area
of support at ¢t = ¢

Dummy variable

Constants independent. of time

Constant independent of particle size

Constants independent of time

Number of particles per unit surface area of support composed of
7 metal units

Diffusion coeflicient of particle composed of 7 metal units
Diffusion coefficient of particle 7 with respect to particle j
Exponent independent of particle size

Exponent independent of particle size

Dimensionless distribution function

Constant independent of particle size

Constant in Scherrer equation

Second order rate constant

Constant independent of particle size

Mean crystallite dimension

Mean length of particle size distribution defined by Eq. (26)
Crystallite size in continuous and discrete representation, re-
spectively

Linear dimension of partiele size distribution defined by Eq. (49)
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Moments of the dimensionless distribution function g{(x)
Exponent

Total number of crystallites per unit surface area of support for
t = tand ¢t = 0, respectively

Total number of particles at times #; and #, respectively
Cumulative distribution in the continuous representation

Continuous density distribution function

Number of particles per unit surface area of support having a
volume in the range v to v 4 dv

Number of particles of size I;

Dimensionless cumulative distribution

Radius of interaction between two colliding particles containing
7 and j metal units

Guinier radius for point-shaped X-ray beams at { = {and ¢ = 0,
respectively

Guinier radius for line-shaped X-ray beams

High field radius from magnetic measurements

Low field radius from magnetic measurements

Porod radius for point-shaped and line-shaped X-ray beams,
respectively

Volume to surface radius

Mean radius from X-ray line broadening

Average radius defined by Eq. (A-1)

Radius of particle

Radius of particle containing ¢ metal units

Average radius of particle defined by Eq. (8)

Total exposed surface area of metal per unit surface area of sup-
port at ¢t = ¢ and ¢ = 0, respectively

Specific exposed surface area of metal per gram of metal
Dimensionless time

Crystal dimension in the direction perpendicular to the reflecting
plane x—y

Time of process

Volume of a particle

Initial average volume of the particles

Volume of a particle eontaining ¢ metal units

Volume increment

Average volumes as measured by different techniques defined in
Table 4

Dimensionless volume

Dimensionless average volumes

Reaction rate constant for the merging process of two particles
containing 7 and j metal units

Surface shape factor

Volume shape factor

Diffraction line breadth

Density of metal

Standard deviation of the size distribution

Standard deviation of the dimensionless size distribution
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n Similarity variable in the continuous representation, dimension-
less volume

Ty Similarity variable in the discrete representation

o Small scale time in the diffusion model

6" = 1 sec

A X-ray wavelength

fhm Moments of similarity distribution defined by Eq. (12)

T = ta1127r7‘1N0
4D,
= 1[1[4D110*/(R11)2]

S S

support

< =
*

I. INTRODUCTION

Aging of supported metal catalysts may
result from the diffusion of metal crystal-
lites on the surface of the support and
subsequent sintering of the colliding par-
ticles (1, 2). If the time needed for two
colliding particles to merge into a single
unit 18 long enough compared to the diffu-
sion time, then the merging process is rate
determining and the aging is sintering con-
trolled. Alternatively the aging is diffu-
sion controlled, The migration of erystal-
lites is hindered when they experience
strong interactions with some sites of the
support, or when the crystallite sizes ap-
proach the dimensions of the pores. When
the migration is hindered, an equilibrium
cerystallite size distribution may be achieved
after a certain time (2).

For unhindered migration two limiting
situations arise. For diffusion controlled
aging the size distribution after a suffi-
ciently long time becomes almost indepen-
dent of the initial distribution and can be
represented by a universal curve in the
dimensionless variables ¢ =n(v) ¢/N? vs
n = Nv/¢. For sintering controlled aging,
no universal curve in the coordinates
(¢,m) exists for the asymptotic behavior
of the size distribution; a family of curves
dependent on the supplementary param-
eters 71 = a1 2ar,Not and ¢* = ¢/v,N, is
obtained instead.

In the following paragraphs situations in

Dimensionless time in the sintering controlled case
Dimensionless time in the diffusion controlled case

Total volume of metal per unit surface area of support
Dimensionless total volume of metal per unit surface area of

Similarity variable in the continuous representation, dimension-
less distribution function
Similarity variable in the discrete representation

which migration is unhindered will be con-
sidered only. The goal is to develop pro-
cedures for extracting from experimental
data information about: (1) the rate deter-
mining step of the aging process, and (i1)
the magnitude and size dependence of the
diffusion coefficient, of the crystallites and/
or of the rate-of-merging constant. Both
physical and chemisorption methods are
examined. The methods include: (a) elec-
tron microscopy; (b) X-ray line broaden-
ing; (¢) small angle X-ray scattering; (d)
magnetization measurements; and (e) static
chemisorption.

Each of the experimental techniques pro-
vides some average value of the crystallite
size. These averages depend on the size
distribution. Because the size distribution
and its time dependence are sensitive to
the rate determining step of aging, a choice
among various mechanisms can be made.
In this paper available experimental data
are interpreted on the basis of the criteria
to be established.

II. ELEcTRON MICROSCOPY

In recent years improved electron mi-
croscopes have become available and mi-
croscopic techniques have been refined to
give resolutions higher than 2 & (3-6), and
crystallites as small as 4-6 A have been
observed and sized (3-4).

Theoretically, the size distribution of
metal crystallites can thus be obtained to
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mclude very small crystallite sizes. From
this information, any average diameter of
the size distribution can be calculated with
SOINE ACCUracy.

Electron microscopy, however, provides
a measure of the projected crossectional
area of a particle perpendicular to the
electron beam. Calculations of average
diameters of physical significance, as for
example the surface average and volume
average diameters can only be obtained
with an additional assumption concerning
the crystallite shape.

In the following development it will be
shown that

a. the whole size distribution,
b. the cumulative size distribution, and
c. the variance of the size distribution

can be used to identify the rate controlling
step of the aging process. Information about
the diffusion coefficient of the erystallites
or about the rate-of-merging constant can
be obtained from electron micrographs
taken at different times of the aging
process.

1. Size Distribution Used to Identify the
Rate Determining Step of the
Aging Process

As shown previously (2) the time de-
pendent size distribution n(v,t), where
n(v,t)dv is the number of particles per
unit surface area of support having a vol-
ume in the range v to v + dv, can be rep-
resented for diffusion control after a short
transient period by a unique curve in the
coordinates

vy = 2002 M
and
7= ]% v. 2)

N is the total number of crystallites per
unit surface area of support and ¢ is the
total volume of crystallites per unit sur-
face area of support. This unique curve is
independent of the initial size distribution.
The length of time after which this unique
curve is reached depends, however, on the
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initial distribution, being longer for broad
initial distributions. For sintering control,
no such unique curve exists and, as will
be shown later, after a short transient
period

'n(]vv—,?q—b = ¢("1717¢*) .

For diffusion controlled aging, the shape
of the curve ¢ () has been computed ear-
lier for some cases (2). New computations
have been carried out for various size
dependencies of the diffusion coefficient of
the crystallites, and the results are plotted
in Fig. 1. The results show that for small
values of » and thus small crystallites
[see Eq. (2)] the shape of the curve y(y)
depends distinetly on the assumed size
dependence of the diffusion coefficient. For
large values of » and thus larger crystal-
lites, however, the obtained curves are
close to each other.

For sintering control and an initially
unisized distribution, the corresponding
curves are given in Ref. [(2), Fig. 20].
Figures 2 and 3 of this paper show the re-
sults obtained also for sintering control
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Fia. 1. Similarity solution for diffusion controlled
case.
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for two other initial distributions. In all
cases a family of curves is obtained which
for large sizes exhibit similar shapes even
for short times. As time increases, the
similarity in shape extends to smaller and
smaller sizes. For sufficiently long times a
family of curves is obtained: each of them
is characterized by the dimensionless time
7, and by a constant parameter ¢* con-
taining some information about the initial
distribution. Since these curves are close
to each other, information concerning
cumulative distributions and some global
characteristics of the size distribution may
be obtained using only the similarity vari-
ables even in the sintering controlled case.

Comparison of the curves ¢ (), obtained
for diffusion control, with those obtained
for sintering control, [(2), Fig. 20] and
Figs. 2 and 3, shows a distinct difference
over the whole size range and thus allows
differentiation between diffusion and sin-
tering control.

Experiments may furnish a discrete spec-
trum of crystallite sizes. The discrete ver-
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sion of the variables ¢ and 5 may be taken
as

®7ow\ Ci¢
v = o2 @
* Ni
ni = ‘;:—’ ()

where Av is a volume increment and c¢; is
the number of particles per unit surface
area of support in the volume range v; —
(Av/2) to v; + (Av/2).

For too large values of Av, it is diffi-
cult to transform the experimentally ob-
tained discrete size distribution into a
continuous size distribution. In such a case
it is preferable to use a cumulative dis-
tribution. The cumulative distribution is
defined as N./N = (1/N) [;®*n(vt) dv in
the continuous representation. For diffu-
sion controlled aging it is, like y, depen-
dent only on :

% = ]%Tﬁ n(v,t)dv =/; ¥(n)dn. (6)
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Fia. 4. Cumulative distribution for diffusion controlled case.

In Fig. 4 the cumulative distribution is
plotted for various size dependencies of the
diffusion coefficient as a function of n;*.
For sintering control and an initially
unisized distribution, Fig. 5 shows that in
the N,/N, 7;* representation a family of
curves characterized by various values of
7, is obtained. The curves from Figs. 4 and
5 show important differences over the
whole size range of crystallites and thus

allow differentiation between diffusion and
sintering control. Because the theoretical
curves in Fig. 4 are so close to each other,
no information concerning the size depen-
dence of the diffusion coefficient can be
obtained.

In what follows it will be shown that
some global characteristics, for instance
the variance, allow identification of the
rate determining step of the aging process.
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2, The Variance of the Size Distribution
Used to Identify the Rate
Determining Step

The variance of the size distribution is
defined by

e A O R e

)
where
0 = [ o ®)
and
6= & [ ©

If the volume is assumed to be propor-
tional to 7%, ie., v = kr®, and the simi-
larity variables defined by Egs. (1) and
(2) are used, Eq. (7) leads for the stan-
dard deviation ¢ to

(#1/3)2]”2

(10)

and Eq. (8) leads for the average radius
<r> to

¢ll3f0wn1/8¢ dn B ¢1/3
(ry = LIBNIT Y SVES TR

where the moments p, are defined by

fm = ﬁ)w 7™y dn.

The ratio between the average radius and
the standard deviation permits elimina-
tion of the unknown proportionality con-
stant k:

7 = () — (P = o s
AV e

(11)

(12)

" _

H1/3
z]uz' (13)

¢ [Mz/a - (#1/3)

For diffusion control the ratio <r>/o
attains, after a short transient period, a
constant value. For sintering control, after
a short period of strong time dependence,
this ratio becomes a weakly dependent
function of time (Fig. 6). In Fig. 6 the
symbol < L> rather than <r> was
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Fia. 6. The ratio of the average crystallite di-
mension (L) to the standard deviation & as a fune-
tion of the dimensionless times 7, and =; for diffusion
and sintering control, unisized initial distribution.
1) Ky «r™ 417 (2) Ky <7 417 3)
K;; = const.; (4) Ki; « r2 4+ 12,

chosen because Eq. (13) is valid for any
characteristic dimension of the particle
related to the volume via an expression
of the form v = kL3

Table 1 contains the values of the mo-
ments, un,. For diffusion controlled aging,
various size dependencies of the diffusion
coefficient are considered. For sintering
controlled aging, the values of the moments
are given for «;; o [(ri2 + 7r2)/(ri + 75)]
and an Iinitially unisized distribution.
Values for all the moments of importance
in any of the experimental methods dis-
cussed in this paper are included.

For diffusion controlled aging, and de-
pending on the size dependence of the
diffusion coefficient, the mean dimension
<L> is related to the standard deviation

o by
(L) = 4.360 for(D». « L4 1),
1 1
(L) = 3.70s for (Dij o« = 4 _>,
T rj

(L) = 2.760 for (D,; = const).
For sintering control (see Fig. 6)

(Ly = 241¢ forr, = 5,
(L) = 2.06¢ forr, = 10.

The values given for sintering control have
been obtained for an initially unisized dis-
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tribution (this kind of distribution appears
to be valid for certain fresh metal cata-
lysts). For other initial distributions, dif-
ferent values will be obtained for <L>/a.
However, in all cases a broad size dis-
tribution will develop after sufficient heat-
ing, and consequently the ratio <L>/¢
will decrease. Figure 7 compares the theo-
retical predictions with the experimental
data for supported metal catalysts (3, 4, 8).

Figure 7 includes experimental results
on the behavior of islands of metal on the
surface of an amorphous support (9, 10).
Skofronick et al. (9, 10) studied the strue-
tural changes of vacuum-deposited gold
islands on amorphous supports of carbon
and silicon monoxide undergoing additional
heat treatment. They found that: (a) the
number of islands per unit area of support
decreased; (b) the mean radius and the
standard deviation inereased; and (c) the
fraction of the support area covered by the
islands decreased. Since the growth mech-
anism is as for supported metal catalysts,
it is natural to include the data in Fig. 7.
Figure 7 shows that identification of the

VT T
20— SINTERING
CONTROL
o = —
10— DIFFUSION ]
CONTROL
I T N N SR N B B S
0 20 40 60 80 100
©

Fic. 7. The standard deviation ¢ as a funection of
the average crystallite dimension (L) as obtained
from theoretical predictions and as observed experi-
mentally for supported metal catalysts and islands
of metal on thin films. (O) reduced at 500°C, im-
pregnation type (4); (@) reduced-at 600°C, im-
pregnation type (4); (V) reduced at 500°C, adsorp-
tion type (4); (W) reduced at 770°C, adsorption
type (4); ((])-reduced at 470°C, impregnation type
(3); (O) heated in vacuum, 15 hr (8); (X) heated
in air, 15 hr (8); () gold islands on carbon and
silicon monoxide supports (10). Sintering control
above line (3); diffusion control below line (3);
(1) Dij =™t 4172 (2) Dy < r7 4178 (3)
D;; = const.
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rate determining mechanism and of the
size dependence of the diffusion coefficient
is indeed possible. The representation used
in Fig. 7 is valid only after the effect of
the initial distribution has disappeared:
For diffusion control the universal (¢—y)
curve is then attained; for sintering con-
trol the size distributions get broader with
time of heat treatment and thus the ratio
o/<<L> increases with time. After suffi-
ciently Jong heat treatment, the experimen-
tally obtained ratio ¢/<<L> will lie above
the region for diffusion control and will
move to even higher o/<L> ratios after
additional heat treatment.

3. Electronmicroscopy Used to Determine
the Magnitude of the Diffusion
Coefficient and the Rate of
Merging Constant

Depending upon the rate determining
step, the time dependence of the total num-
ber of particles now allows estimation of
the magnitude of either the diffusion co-
efficient or of the rate-of-merging constant.
It has been shown previously (2) that the
rate of change of the total number of par-
ticles for diffusion control is given by:

dN

o= —b N, (14)
where
Kt L] -]
b, = 5 ¢ / f YA (@™ + ™) dnd7,
Jo Jo
(15)
«_  Ar m
K' = IWT) Dy, (16)
and
_ DuB'. ’
T = R (17

Equation (14) is valid if In 47> 1. Be-
cause K* varies only slowly with ¢’ and
thus with 7, In(47T) is henceforth assumed
constant. Equation (14) allows computa-
tion of the ratio D,/In(4T). With an esti-
mation of In(47), the diffusion coefficient
is then obtained. The experimental data
of Skofronick et al. (9, 10) for small gold
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islands on a support—described above in
some detail—are now used to compute the
magnitude of the diffusion coeflicient. From
Fig. 7, where Skofronick’s data are plotted,
one may conclude that the size dependence
of the diffusion coefficient is represented
satisfactorily by Di; o« (1/r;) + (1/7), i.e.,
m = —14. Introducing m = —14 into Eq.
(14) and integrating, one obtains with
p-1ss = 1.159 (see Table 1)

D1 3¢1/3

In(4T) ~ 1670511596 — &)

1 1
x| i = ) 09

Equation (18) allows computation of the
ratio D,/In(4T) from experimental data.

For Skofronick’s data the ratio D,/
In(4T) varies, depending on the experi-
mental conditions, between 3 X 107** and
1.5 X 107 em?/sec (assuming r, = 10 4).
To obtain the diffusion coefficient D, from
the ratio D,/In (47T), the quantity In(47T) =
In(4D.,6’/R.,%) has to be estimated. The
small scale time 4’ is, however, not pro-
vided by the theory. Because the time
¢’ influences the diffusion coefficient only
via Iné’, even large changes in the value
of ¢ have a weak effect on the value of
the diffusion coefficient. For a specific ex-
ample [Expt 8, Table 2 in (10)] the ratio
D,/In(4T) is computed from Eq. (18),
and one obtains D,/In(4T) = 2.45 X 10°
cm?/sec. Choosing 100 sec <6'<< 9000 sec,
where 9000 sec is the total time of the
experiment, one obtains for r, = 10 & that
D, is in the range of 2 X 107*° to 6 X 107¢
em?/sec. Using the same procedure, one
finds that, depending upon experimental
conditions, the diffusion coefficient of the
gold islands in Skofronick’s experiments is
of the order of 10-*® to 5 X 107'" em?/sec.
For supported metal catalysts, we pre-
viously (2) have computed a diffusion co-
efficient of the same order of magnitude.

If the aging process is sintering con-
trolled, the rate of merging constant, a;i,
can be obtained as follows:

For sintering control, the rate of change
of the total number of particles is given
by (1, 2)

PULVERMACHER AND RUCKENSTEIN

R (19)
where
by = K ¢"n, (20)
K* = 2o, (21)
Uy
and
wm = [T ¥ e (22)

In the derivation of Eq. (19), the size de-
pendence of the rate of merging constant,
a;j, is assumed to be of the form

o Tism + T]3m
a; =C Er—— (23)

The time dependence of u, is weak com-
pared to the time dependence of N (see
App. A), and thus b, can be considered
constant. Equation (19) can thus be inte-
grated to yield an expression for the rate
of merging constant a;;:

MT A —m)l — L) pn2nry
1 1
and
_ N1 U1 —
on = <log <N:>> <————t2 - form = 1.

(25)

N, and N, are the total number of par-
ticles at times ¢, and t,, respectively. The
exponent m may be found from the rate
of change of the total number of particles
in the system. The moments p, are of
order unity. For m = 24 the appropriate
moments are given in Table 1. Equations
(24) or (25) thus allow estimation of the
rate-of-merging constant a,.

No experimental data obtained by elec-
tron microscopy are available to compute
a1;. However, as shown below, data ob-
tained with other techniques are available
and will be used to compute the rate-of-
merging constant ai,.
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ITI. X-Ray LiNE BROADENING

X-Ray line broadening is extensively
used to determine the particle sizes of sup-
ported metal crystallites in the size range
50-500 A. The mean dimension, L, of the
crystallites composing the sample, is re-
lated to the X-ray diffraction broadening,
B, by (11, 12)

_ K\
3 cos 9

where L is the mean ecrystallite dimension,
A the wavelength of the X-rays, 6 the
Bragg angle, 8 the diffraction line breadth
after correction (see below), and K, de-
pends on the definition of the mean crystal-
lite dimension L, the definition of the line
breadth B, the shape of the crystallites,
and the reflection plane considered. For
details about the application of X-ray line
broadening to supported metal catalysts
see Refs. (12-23).

1. Comments About the Mean Dimension
Measured by X-Ray Line Broadening

It is commonly accepted in the catalysis
literature that X-ray line broadening gives
the mean length of the crystallite size
distribution defined by (24-28)

L JenQpdl
© = TeEn(Bdl

This conclusion is based on the work of
Jones (14) who considered the broadening
caused by the size distribution of cubic
crystals. Assuming that the total intensity
reflected by the erystal is proportional to
its volume, Jones obtained for the integral
breadth B of the diffraction

A
CcOs G[Elwni(li)li"/z 1wni(li)li3]

(26)

g =

More recent investigations have shown
that this result cannot be generalized to
arbitrary reflection planes and ecrystallite
shapes. A more general treatment, based
on the work of Stokes and Wilson (29),
and Bertraut (30}, leads to the following
expression for the integral breadth g
(31, 32)
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A
B—Lcosﬂ'

In Eq. (27) the effective particle dimen-
sion L is given by the expression

_ f f Txyzdxdy
T szdxdy’

where T, is the crystal dimension in the
direction perpendicular to the considered re-
flecting plane z—y. The integration in Eq.
(28) is carried out over all the particles
in the sample. These equations are valid
for a dilute ensemble of particles of arbi-
trary shape, randomly oriented.

The dimension L in Eq. (28) represents
a volume average of the distribution of
crystallites normal to the reflecting plane,
ie.,

(27)

L (28)

L= [TdV = (TH/T),  (28%)
Schwarz inequality (see App. B for de-
tails) shows that <T?> is equal or larger
than <T>? and consequently L is equal
or larger than <T>.

Let us consider the case in which line
broadening is caused by a distribution, n;,
of small cubic crystallites of sizes L;, the
sides of which are parallel to the axis of
the cubic crystallite. Assume that the re-
flecting plane is parallel to one of the sides
of the cube. The integration in Eq. (28)
can be carried out in a simple manner,
and one obtains Jones’ result:

_ ffT,;fdiEdZ/ _ 21°°n,~(L,~)L,-4

[ = Ll A28y &1 Mib) L
ffTrydxdy 21°°n1-(L,~)L,-3

(26)

For arbitrary crystal shapes and reflec-
tion planes, the dimension L obtained from
X-ray line broadening, Eq. (28), does not
reduce to Eq. (26). Furthermore, it is diffi-
cult to obtain experimentally the integral
breadth, since it is difficult to evaluate the
area in the tails of the reflection profile.
The half maximum intensity breadth, de-
fined as the breadth at half the maximum
intensity, is usually measured instead.
However, a general expression for the half
maximum intensity breadth similar to Eqs.
(27) and (28) cannot usually be derived.

One may conclude that X-ray line
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broadening yields a mean average of the
crystallite dimension normal to the reflect-
ing plane [Eq. (28)], which only in the
special case of cubes, and when certain re-
flection planes are considered, reduces to
the mean dimension usually used in cataly-
sis [Eq. (26)]. Also the integral breadth,
rather than the half maximum intensity
breadth, has to be measured.

In principle it is possible to ecalculate
the particle size distribution from the peak
shape of the diffraction line (31). How-
ever, for supported metal catalysts it is
difficult to obtain an accurate corrected
peak shape.

2. Time Dependence of the Mean Average
Crystallite Dimenston Used to Identify
the Rate Determining Step of the
Aging Process

The time dependence of the mean aver-
age crystallite dimension, regardless of its
exact definition may allow identification
of the rate determining step in the aging
process. In App. A it is shown that the
time dependence of the average particle
size, defined by the general expression

- fo”T”n(T,t)dT]”(e_n
Bes= [fo“’rfn(r,t)dr (29)

is given by
(Re g2 = Cit + C,
for diffusion control, and by
Res=Cst+ C,

for sintering control (m = 24).

Provided the mean average crystal di-
mension obtained from X-ray line broaden-
ing ean be equated to the average radius,
R.s, the above equations can be used
to determine both the aging mechanism
and the size dependence of the diffusion
coeflicient.

IV. SmaLL ANcLE X-RAY SCATTERING

Investigations of metal dispersions of
supported metal catalysts with small angle
X-ray scattering technique (SAXS) have
been made only seldom beecause the scat-
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tering from the pores of the support and
the crystallites contained in them are cor-
related. Consequently the scattering from
the pores cannot be treated as part of the
background and substracted out. The scat-
tering from the pores, however, can be
eliminated, either by filling the pores with
a liquid of the same electron density as
the support (33) or by destroying the
pores by pressure sintering the ecatalyst
sample prior to the small angle scattering
experiment (34). SAXS was recently used
for platinum metal dispersions on alumina
(34—86) and for platinum metal dispersions
on charcoal catalysts (37). Whyte et al.
(35, 38) eliminated the interfering scatter-
ing from the micropores of the alumina
support by filling the pores with small
amounts of CH.I; or C,H,l. Somorjai et al.
(84) reduced the pore scattering by pres-
sure sintering the catalyst sample. Parlitz
et al. (387) assumed that the effect of the
metal crystallites can be obtained sub-
stracting the scattering of the blank sup-
port. Since no additivity of the scattering
of metal and support exists, their results
have to be reconsidered.

The theoretical equations concerning the
intensity of the scattered X-ray (39-44)
allow determination of two average radii,
the Guinier radius (radius of gyration),
R, and the Porod radius, Rp. For a point-
shaped X-ray beam

Ret = Joon(r)rddr _ (%)

T fen(ryrtdr (%Y (30)
and
_ Jeen@)rtdr _ (%)
e =Tonorar = @V
For a line-shaped beam
Rg? = (r")/{r®) (32)
and
= ‘
Rp, = = (33)

In what follows it is shown that as soon
as the similarity representation becomes
valid, the ratio Rr/Rq is a constant for
diffusion controlled aging. After an initial
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strong variation, the same ratio becomes
a weakly dependent function of time for
sintering controlled aging. Comparison of
the experimentally obtained and computed
values of this ratio allows identification of
the rate controlling step of the process.

1. The Ratio Rp/R¢ Used to Identify the
Rate Determining Step

Since the available experimental data
have been obtained with a line-shaped
X-ray beam, only Rg, and Ry, are con-
sidered in the following treatment. If the
volume is assumed proportional to 73, v =
kr*, (k =const.), and if the similarity
variables (1) and (2) are introduced one
can write

Rg, = L (f o""v’”‘n(v)dv)”2
6L ™ s \ [e=vln(v)dy
¢ [oorydn)”
= BNIB ( [ Pydn 34)
and
Ro. = 1 [e*vn(v)dv
PL ™ [ Bn(v)dp
¢1/3
= ey )

Dividing Eq. (35) by Eq. (34) leads to
the elimination of the unknown propor-
tionality constant k. One obtains

Re, _  (Joenoydn)?

Ro, — [oon*dn(fo=n"*ydn)!?
Because for diffusion control ¢ depends
after a short time only on 7, the ratio
R»./Rg, is a constant, the value of which
depends on the size dependence of the dif-
fusion coefficient of the crystallites.

For sintering control the ratio Rp,/Rq,
is plotted in Fig. 8 as a function of 7,
Until 7, =~ 5, the mentioned ratio has a
rapid variation, while for larger values of
7, the variation is weaker.

Table 2 gives the theoretical values ob-
tained for the ratio Rp,/Re, for diffusion
control and sintering control. The mo-
ments of the similarity distribution used
in the calculations are listed in Table 1.
The ratic Rp,/R¢, 1s a measure of the
width of the distribution function n(v).

(36)
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1.0

Fic. 8. The ratio of the Porod radius to the
Guinier radius for a line-shaped X-ray beam from
numerical solution of kinetic equations for sintering
control; unisized initial distribution.

For diffusion control with strongly size
dependent diffusion coefficients, the dis-
tribution function is relatively narrow.
This fact is indicated here by a ratio Rp,/
Rg,, close to 1. For diffusion control with
size independent diffusion coefficient, the
distribution function is less narrow, while
for sintering control the distribution funec-
tion is very broad and its breadth in-
creases with time.

Table 3 lists the results of Whyte et al.
(85) for platinum dispersion on alumina
and shows that the rate of aging was sin-
tering controlled in all cases.

TABLE 2
Tue RaTtio Rp,/Be, FOR VarIOUS MECHANISMS
A8 OBTAINED FROM THE THEORY

Rp,/Rg,
Diffusion control
1 1
D;j -9 772 + 7‘_]'2 0877
1 1
Dy« —+ — 0.853
ri T
Dij = const. 0.815
Sintering control®
n=2.5 0.702
n=3 0.662
n=17.5 0.647
=10 0.640

2 At r, = 0 unisized distribution.



128

TABLE 3
ExpERIMENTAL REsuLts oF WHYTE et al. (35)
Catalyst 2RGL 2R PL R PL / RGL
F-G (fresh) 57 37 0.649
A-G (aged) 75 56 0.747
F-3 (fresh) 59 41 0.695
A-3 (aged) 64 43 0.672

2. The Time Dependence of Rg Used To
Calculate the Rate of Merging
Constant

In App. A it is shown that for diffusion
control and D;; « (1/r%) + 1/(r;?), Re® is
a linear function of time

RG5 = C'lt + Raos. (37)

For sintering control and m = 24, Re is in
good approximation a linear function of
time

RG =~ Cat + RGU~ (38)

Somorjai et al. (34) have measured R, as
a function of time for platinum on alumina
in both reducing and oxidizing atmo-
spheres. They found:

a. That a {faster change occurred at
higher temperatures,

b. That heating in an oxidizing atmo-
sphere caused a faster growth process than
heat treatment in a reducing atmosphere,

c. That the samples exhibited a very
fast growth in the first few hours, which
leveled off with time,

The effect of the temperature and of the
atmosphere have been explained in our
previous paper (2) by their influence on
the mobility of the crystallites and on the
merging behavior of the crystallites. The
growth behavior can be explained as fol-
lows. Initially the crystallites are small
and their mobility is relatively high, so
that their growth is controlled by the
merging process of the crystallites. Fig-
ure 9 shows the experimental dependence
of the average radius of gyration as a func-
tion of time during the initial period. In
the cases for which enough experimental
information is available, Rs is a linear
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Fi16. 9. The time dependence of the Guinier radius
as observed experimentally (34). Oxidizing atmo-
sphere: (V) T = 700°C; () T = 600°C; reduc-
ing atmosphere: (X) T = 700°C; (O) T = 600°C.
(@) Guinier radius at { = 0 in all the cases.

function of time to a good approximation.
This kind of dependence shows that the
rate of aging is sintering controlled during
this period.

After extended heat treatment, the crys-
tallites have grown appreciably and their
mobility is decreased. Additional restric-
tions are caused by the fact that some of
the crystallites are now of the same order
of magnitude as the pores in which they
lodge and consequently their diffusion is
hindered.

In what follows, the rate of change of
the Guinier radius, Rg, during the initial
period of Somorjai’s experiments is used
to compute the magnitude of the merging
constant ai;.

Because (see App. A)

R¢ =~ Cyit + Rg, (39)
where
¢, = e [ &/sr,
3kV3 | o
by = K*¢*3uys,
and
* 2mriom
K= —oan

the rate of merging constant, a;;, may be
shown to be given by

- dnklRo — Ro) L ()"

2311
2r ot Moz \Ms/3
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Assuming that the particles are spheres
and the surface area of the support is of
the order of 200 m?/g of support, the rate
of merging constant, a,,, for two particles
of radius 10 A is obtained as:

an =~ 2.1 X 10~ em/sec  for 600°C and in
an oxidizing at-
mosphere;

for 600°C and in
a reducing atmo-
sphere;

for 700°C, again
in a reducing at-
mosphere.

an = 1.8 X 10~ em/sec

an = 4. X 107 em/sec

We previously (2) have computed for the
rate-of-merging constant for Pt-Al.O; re-
forming catalysts values of the same order
of magnitude.

V. MaGNETIC MEASUREMENTS

This method, which is applicable for
ferromagnetic metals, for example nickel,
cobalt, and iron yields two average vol-
umes of the particle size distribution, the
low field volume wvpr and the high field
volume vup. For details on this method
see Refs. (46-49). The low field volume
vrr and the high field volume vyr are de-
fined by

) _ Jertn(o)de
ULy = @ = ﬁ*——fo”vn(v)dv’

vpr = (V) = [)m vn{v)dy.

Using the similarity variables (1} and (2)
these equations can be rewritten as

(41)

(42)

UL = %]{; 1]2¢/d7] (43)
and
VHF = N (44)

If the volume is assumed proportional to
r%, le., v =kr®, a low field radius, Ry,
and a high field radius, Rup, may be cal-

culated as
1 ¢1/3 © 1/3
Ryp = B NiB (/(; 1721,0(171) (45)
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and

1 ¢1/3
= fn N
The high field radius is independent of the
form of the size distribution and thus in-

dependent of the aging mechanism. The
ratio Ryr/Rur is given by

Rur (46)

RLF (/ ® >1/3
five dn ) -
Rur . 7y

For diffusion control this ratio is a con-
stant, the value of which depends on the
size dependence of the diffusion coefficient.
Using the appropriate moments (see
Table 1), one obtains from Eq. (47)

(47)

R _ .. ( 1 1)
pe =113 (Dyx ot )
Rur _ 1,1
p = (Dus g )
Rie

— = 1.26 (D;; = const.).
Ray

For sintering control the ratio Rip/Rur is
plotted in Fig. 10 as a function of r,. For
11 = 10, Rip/Rur has a value of 1.89 and
will move to still higher values for increas-
ing ;. Comparison of Fig. 10 with the
values obtained for diffusion control shows
that the value of the ratio of Rir/Rur
allows identification of the rate determin-
ing step. For diffusion control, the size
dependence of the diffusion coefficient,
however, cannot be determined since the

F1c. 10. The ratio of the low magnetic field radius
to the high magnetic field radius from numerical
solution of kinetic equations for sintering control;
unisized initial distribution.
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obtained values are too close to each other.
Reinen and Selwood (47) have obtained
saturation magnetizations for nickel sup-
ported on silica gel and on y-alumina for
both fresh and thermally treated (sin-
tered) catalysts. For the sintered catalyst
only the low field radius was obtained. For
the fresh nickel silica coprecipitate and the
nickel alumina impregnate, however, both
low field and high field radii are reported
[(47), Table 1]. Since during the prepa-
ration of these samples, high temperatures
were used for extended times, migration
and sintering of the unreduced nickel may
already have occurred. One thus might ex-
pect that even the fresh catalysts may al-
ready follow the unique curve.
The ratio Eir/Rur yields:

23 53 for nickel-silica

Rur/Rur = 5~ 1 coprecipitate
and

26 for nickel-alumina
Rur/Rur = 3 = impregnate.

Such a high ratio of Rpp/Rur indicates
that the agglomeration during the prepa-
ration process was sintering controlled.

VI. CHEMISORPTION MEASUREMENTS OF
THE EXPOSED SURFACE AREA OF METAL

Dynamic and static chemisorption meth-
ods discussed in several review papers (8,
38, 50-56) are available. Though the dy-
namic methods are easily applicable, the
gas uptake cannot be related in a simple
way to the surface area of the sample.
Consequently the discussion will be re-
stricted here to the static methods. If one
assumes that the particles have a similar
shape, the specific surface area 8* per gram
of metal is related to the average particle
dimension I,

(48)

where p is the density of the metal, «, the
surface shape factor, a, the volume shape
factor and

_ foen)bdl

los = Toen()dl

(49)

PULVERMACHER AND RUCKENSTEIN

For spheres and cubes having all surfaces
exposed as/a, = 6, while the linear dimen-
sion l,; is the diameter of the sphere and
the length of the cube, respectively.

In what follows the time dependence of
the exposed surface area of metal per unit
area of support, S, is used to determine the
rate determining step of the aging process.
S* and 8§ are related by a constant factor,
dependent on the metal loading of the
catalyst and the surface area of the
support.

1, The Time Evolution of the Exposed
Metal Surface Area Used to Identify
the Rate Determining Step

It has been shown previously (7, 2) that
for rate constants of the form
K@ww) = K*(p™ 4+ v™) (50)
the time dependence of the exposed surface
area S of the metal is given by

dS

e = - 4—3m
dt baS(t) )

(51)

where
K Hm

3 ¢2—3mb 23—-3m Moy 33-—3m

bs (52)
b, is a geometric factor, dependent on the
shape of the particles which is related to
the surface and volume shape factors by

by'= o%‘ (53)
For diffusion control the coefficient b; is
after a certain time (in which the simi-
larity solution is reached) independent of
time. For sintering control b; is after an
initial rapid variation with time a weakly
dependent function of time. For the par-
ticular value, m = 24, Eq. (52), reduces,
for sintering control, to the constant

K*

Integration of Eq. (51) leads to
3—3m
(%) =1 4 Sgsmbst (55)

for diffusion control, and to
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for sintering control if m = 24.

1§ for sintering control m = 24, Eq. (55)
remains approximately valid because the
coefficient bs has a much weaker time de-
pendence than the exposed surface area S.

The decay of the exposed surface area
is very sensitive to the rate determining
step of the aging process. In the case of
sintering control, when m = 24, 1/8 in-
creases linearly with time, while in the
diffusion controlled range, (1/S)**" in-
creases linearly with time. For example, for
a diffusion coefficient which depends on size
as Diocri2, (1/8)° increases linearly with
time.

In our previous paper [(2), Table 1] we
have used this high sensitivity of the de-
cay of the exposed surface area to deter-
mine the mechanism of the aging process
and the size dependence of the diffusion
coefficient for a variety of Pt-on-alumina
catalysts.

(56)

VII. COMPARISON OF THE VARIOUS
MEgTHODS

Each of the discussed techniques pro-
vides an average radius of the size distri-
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bution of the crystallites summarized in
Table 4.

The only radius which is independent
of the form of the size distribution is the
high magnetic field radius

1 ¢,113
= W W‘-

In Table 5 this radius is chosen as 100,
and the other average radii obtained from
the different experimental methods and for
different aging mechanisms are compared
to Rur. The average radii were computed
using the appropriate equations given in
the text together with the values for the
moments of the similarity distribution
listed in Table 1.

For diffusion control with a strongly size
dependent diffusion coefficient, the size dis-
tribution is narrow and consequently the
values of the average radii are close to
each other, within 20%. For sintering con-
trol the size distribution becomes very
broad with time and the average radii vary
by more than a factor of 2.

For both diffusion control and sintering
control, the relationship among the average
radii can be deseribed by inequalities of
the form

Rur € Rvs = Rp < Ry < Ry £ Re. (57)

RHF

TABLE 4
AVERAGE VOLUMES AS MEASURED BY THE DIFFERENT TECHNIQUES

Method

Average volume

X-ray line broadening®

Gas-chemisorption method

Small angle X-ray scattering

Magnetic measurements

(Jomvan(y, Odv)?
(Jo*vn(v, t)dv)?

_ _ Manle, )dv)?.
vvs = kBve® = (Jo=v2n(v, t)dv)?

_ (o™ *n(v, t)dv)¥?
= (Jo2o*hnly, Hdp)di
_aps = Uovn(, Ddv)
vp = tRp? = Jo=*Pnlv, O)dv)™
_ Jo®vn(y, dv
F foevn(y, )dv
fo“on(v, t)dv
Jo=n(v)dv

vw = ]CRW3 =

= [ 3
UGL A RGL

L

VHF =

Electron microscopy provides any average volume needed

s As defined by Eq. (26).
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TABLE 5
THEORETICAL PREDICTIONS OF THE RELATIVE MAGNITUDE OF THE AVERAGE RADII OBTAINED BY
Various METHODS FOR DIFFUSION AND SINTERING CONTROL

Ray Rp Rvs Rye Brr Rg, Rg
Diffusion control

D <24 ;2 100 105 105 109 113 120 123
D;j o r 1 4 1 100 107 107 112 117 125 129
D;; = const. 100 111 111 119 126 136 147

Sintering control (initially unisized)
n=2.5 100 115 115 131 144 164 175
=25 100 125 125 148 165 189 202
=175 100 133 133 160 179 205 220
1 =10 100 139 139 169 189 218 234

¢ As defined by Eq. (26).

The equal signs associated with the in-
equality signs are only valid for unisized

¢1/3 _ s
v = owen| [

distributions. In App. B it is shown that
these inequalities, Eq. (57), are valid for
all possible size distributions.

By using two different experimental
methods, the inequalities may be used for
checking the accuracy of both the basic
assumptions of the methods and the ac-
curacy of the experimental procedure.

The literature is rich in data reported
for crystallite sizes obtained simultaneously
with more than one method.

In Table 6 some of these results are
summarized and compared to the in-
equalities (Eq. 57). In the cases where
the experimental data do not satisfy
the inequalities, possible explanations are
advanced.

APPENDIX A

The time dependence of certain aver-
age radii of the distribution function can
be obtained starting from the general
expression

_ fo”ren(r,t)df]”(”’”.
Res = [fo‘”rfn(r,t)dr (A-1)

The volume is assumed to be proportional

0 1/e—f
ne”‘lﬁdnﬁ n”all/dn] -

to 7%, v = kr®. Using the similarity vari-
ables ¢ and 5, one obtains

(A-2)

The rate of change of the total number of
particles, N, is given by Eqs. (14) and
(19) for diffusion control and for sintering
control, respectively. Integrating Eq. (14),
one obtains for diffusion control

N

For sintering control and m = 24, b, in
Eq. (19) is a weakly dependent function
of time (see Fig. 11). Since the total num-

(A_’f)) - =1 + (1 - m)Nol"”blt. (A-3)

e N e e le6

! Ku"l-z +n2

«rd 2
0.9~ S R

f"Z/S 2 F'-Z/S
Oe8- 1,2
{
7 A0 T I O T s PN
0 2 8 10

4 6
T.%

Fic. 11. The moments us; for sintering control
and u_gss for diffusion control as a function of r, and
72 obtained from numerical solution of kinetic equa-
tions, unisized initial distribution.
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ber of particles, N, changes much faster
with time than b,, one can integrate Eq.
(19) assuming that b, is constant. One
obtains

Figure 12 compares the total number of
particles obtained numerically by solving
the exact discrete version of the popula-
tion balance [Eq. (2) in (2)] with that
obtained from Egs. (A-3) and (A-4). Using
Eq. (A-3), Eq. (A-2) becomes

(Re,p)30~m™ = Cit 4 Cy (diffusion control),

(A-5)

where
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For sintering control and m = 24, one
obtains

Re.f == (wgf + (14, (A‘G)

where

and
Yy 3C3
C BN
AprrPENDIX B

From the numerical results given in
Table 5 it results that
RHF S RVS = RP _<_. RW S RLF S RGL'
(B-1)

V bl — ® . 3(0—m)le—f
C, = I‘(Frm—) P [[0 n“’sw(n)dn/fo n”3¢(n)dn]

and
C,

C: = (1 = m)biNo™

Tz

0 50 100 150 200

~400

100

0 2 4 6 g 10

Fia. 12. Comparison of the total number of crys-
tallites for sintering and diffusion control obtained
from numerical solution of kinetic equations with
those obtained from Eqs. (A-3) and (A-4). (@) Nu-
merical solution of population balance; (—) Egs.
(A-3) and (A-4).

In what follows it is shown that these in-
equalities hold for all possible size distri-
butions. For convenience we use the aver-
age volumes rather than radii (between
them the relation v = kR® is assumed

valid). The inequalities (B-1) can be
written as
var < vys = vp S vy < owp S vg.  (B-2)

The following dimensionless quantities are
introduced

ga,t) = %07 n(v,t) (B-3)
and
v
r = an (B-4)

where v, is the initial mean volume of the
crystallites, i.e., vo = ¢/No.

The zeroth order moment of g(z), My,
and the first order moment of g(x), M, are
defined by
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AGING OF SUPPORTED METALS

M, = fw glx,t)dx = 1, (B-5)
0

M, = / zg(x,t)de = Zi,o =a> 1.
0 N

The variance ¢** of the dimensionless size
distribution g(z,t) is related to the mo-
ments M, and M, via

=My — M2=M,— a* (B-7)
For M, =1, My =a and M, = ¢* + a*
the following inequalities have been estab-
lished by Von Mises (62)

(B-6)

2

*2\ z—1
a$<1+$2-> < M, <a*
a

ifo<az<1, (BS)

*a\ 1
a%<M,<M(1+ZJ

a

ifl<z<2 (B-9)

| [ s@r@e@id | <[ [7 re@g@a || [7 @@z,

#2\ x—1
M, > a* (1 + 0'_2>
a

if x> 2. (B-10)

These inequalities result from the Schwarz
inequality together with the assumptions
that P(x,t) = [,° g(x,t) dx is an increasing
function of z in the interval 0 <z < 0,
and that lim, ., fo® g(z,t) dx = 0.

Using Eq. (B-8) for x = 24, it may be
shown that

1112 ad

a M 2 /33

>a

or
(B-11)
Inequality (B-9) leads for z = 44 to

VLF > Vyyg = Vp > VHF.

or
VLF > Uw > UHF. (B-12)
Inequality (B-10) leads for x = 74 to

M24/3

Map > i (B-13)

137

Inequality (B-9) yields, for x = 34,
ad3 < M5/3 < a\BM3.

With UG/'U() = (M7/3/M5/3)3/2, a.nd Eqs.
(B-13) and (B-14) one can show that

ve o, M

) a

(B-14)

or
Vgy > ULF- (B-15)

Equations (B-11), (B-12) and (B-15) are
equivalent to Eq. (B-2), provided that
Vw/Vp > 1.

From Table 4 it follows

ill/ _ A{4/33M2/33
Tp ab

Making use of the Schwarz inequality
(B-16)

with f, (x) = x2?/% and f,(x) = £/3 it results
MysMop > a? (B-17)

and thus

(B-18)

Consequently the inequalities (B-2) and
(B-1) hold for all possible size distribu-
tions.

Uw 2 Vp.
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